26 research outputs found

    Electron channeling studies of atom site preference and distribution in doped Mg2Si1-xSnx thermoelectrics

    Get PDF
    The electron channeling effect, i.e., the dependence of the characteristic x-ray emission on the crystallographic direction of the incoming beam in an analytical transmission electron microscope was employed to elucidate the crystal site location and distribution of the dopant and host ions in Mg2Si1-xSnx thermoelectric (TE) materials, doped with low amounts of Bi. Experiments performed both in pure Bi-doped Mg2Si and mixed Mg2Si1-xSnx (x = 0.4, 0.6), firmly confirmed that Mg occupies the two tetrahedral T sites, 8c (¼, ¼, ¼) and (¼, ¼, ¾), with some vacancies present, too, whereas Si and Sn the 4a (0, 0, 0) and 4b (½, ½, ½) octahedral C and N sites, respectively. Bi ions follow the trend of Si and Sn, occupying 4a sites, but also there is a partial distribution of them in 4b sites. We moreover observe a certain degree of asymmetry along the {111} directions in Mg2Si1-xSnx, predominately for the variable distribution of Bi and Sn in the lattice, which indicates Bi substitution for Sn in an uneven fashion. The channeling results are in line with TE property measurements, especially in relation to lower thermal conductivity and negative Seebeck coefficient due to Bi incorporation in the lattice. These findings demonstrate once more the effectiveness of the channeling technique to provide direct crystallographic information and refine atom positions in materials, particularly for nanoscale crystal grains.publishedVersio

    Reduction of Hf via Hf/Zr Substitution in Mechanically Alloyed (Hf,Ti)CoSb Half-Heusler Solid Solutions

    Get PDF
    Abstract (Hf,Zr,Ti)Co(Sb,Sn) Solid solutions were prepared by mechanical-alloying followed by hot-press method as an attempt to reduce Hf concentration and therefore the material’s cost without negatively affecting the thermoelectric performance. To this end, two different methods were applied: (a) Hf substitution with its lighter and cheaper homologue Zr; and (b) fine tuning of carrier concentration by the substitution of Sb with Sn. The isoelectronic substitution of Hf with Zr was investigated in Hf0.6-xZrxTi0.4CoSb0.8Sn0.2 solid solutions and resulted in lower power factors and ZTs. However, the low thermal conductivity of Hf0.4Zr0.2Ti0.4CoSb0.8Sn0.2 contributed in achieving a relatively good ZT~0.67 at 970 K. The effect of charge carrier concentration was investigated by preparing Hf0.4Zr0.2Ti0.4CoSb1-ySny (y = 0.15–0.25) compounds. Hf0.4Zr0.2Ti0.4CoSb0.83Sn0.17 composition prepared by six hours milling reached the highest ZT of 0.77 at 960 K.publishedVersio

    Thermal Conductivity in Thermoelectric Materials

    Get PDF
    Thermal conductivity is a key parameter in identifying and developing alternative materials for many technological and temperature-critical applications, ranging from higher-temperature capability thermal barrier coatings to materials for thermoelectric conversion. The Figure of Merit (ZT) of a thermoelectric material (TE) is a function of the Seebeck coefficient (S), the electrical conductivity (σ), the total thermal conductivity (κ) and the absolute temperature (T). A highly-performing TE material should have high S and σ and low κ. Thermal conductivity has two contributions, the electronic (κE) and the lattice (κL). Various models have been developed to describe the lattice component of thermal conductivity. In this chapter, the models for the evaluation of lattice thermal conductivity will be explored, both phenomenological as well analytical models, taking into account the various phonon-scattering processes, with examples of real materials

    Analysis and design of a silicide-tetrahedrite thermoelectric generator concept suitable for large-scale industrial waste heat recovery

    Get PDF
    Industrial Waste Heat Recovery (IWHR) is one of the areas with strong potential for energy efficiency and emissions reductions in industry. Thermoelectric (TE) generators (TEGs) are among the few technologies that are intrinsically modular and can convert heat directly into electricity without moving parts, so they are nearly maintenance-free and can work unattended for long periods of time. However, most existing TEGs are only suitable for small-scale niche applications because they typically display a cost per unit power and a conversion efficiency that is not competitive with competing technologies, and they also tend to rely on rare and/or toxic materials. Moreover, their geometric configuration, manufacturing methods and heat exchangers are often not suitable for large-scale applications. The present analysis aims to tackle several of these challenges. A module incorporating constructive solutions suitable for upscaling, namely, using larger than usual TE elements (up to 24 mm in diameter) made from affordable p-tetrahedrite and n-magnesium silicide materials, was assessed with a multiphysics tool for conditions typical of IWHR. Geometric configurations optimized for efficiency, power per pair and power density, as well as an efficiency/power balanced solution, were extracted from these simulations. A balanced solution provided 0.62 kWe/m2 with a 3.9% efficiency. Good prospects for large-scale IWHR with TEGs are anticipated if these figures could be replicated in a real-world application and implemented with constructive solutions suitable for large-scale systems.Fundação para a Ciência e a Tecnologia, European Regional Development Fund (ERDF), P.O.F.C.—COMPETE, European and National Funds: M-ERA.net Project THERMOSS (M-ERANET2/0011/2016), MEtRICs—Mechanical Engineering and Resource Sustainability Centre (UIDB/ 04077/2020), C2TN—Center for Nuclear Sciences and Technologies (UID/Multi/04349/2019), Project Exhaust2Energy (PTDC/EMS-ENE/3009/2014)

    Carbon sequestration via enhanced weathering of peridotites and basalts in seawater

    Get PDF
    Enhanced weathering of mafic and ultramafic rocks has been suggested as a carbon sequestration strategy for the mitigation of climate change. This study was designed to assess the potential drawdown of CO 2 directly from the atmosphere by the enhanced weathering of peridotites and basalts in seawater. Pulverized, and ball milled dunite, harzburgite and olivine basalt were reacted in artificial seawater in batch reactor systems open to the atmosphere for two months. The results demonstrate that the ball-milled dunite and harzburgite changed dramatically the chemical composition of the seawater within a few hours, inducing CO 2 drawdown directly from the atmosphere and ultimately the precipitation of aragonite. In contrast, pulverized but unmilled rocks, and the ball-milled basalt, did not yield any significant changes in seawater composition during the two-month experiments. As much as 10 wt percent aragonite was precipitated during the experiment containing the finest-grained dunite. These results demonstrate that ball milling can substantially enhance the weathering rate of peridotites in marine environments, promoting the permanent storage of CO 2 as environmentally benign carbonate minerals through enhanced weathering. The precipitation of Mg-silicate clay minerals, however, could reduce the efficiency of this carbon sequestration approach over longer timescales

    Energy harvesting technologies for structural health monitoring of airplane components - a review

    Get PDF
    With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 "Optimising Design for Inspection" (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.The work of S. Zelenika, P. Gljušcic, E. Kamenar and Ž. Vrcan is partly enabled by using the equipment funded via the EU European Regional Development Fund (ERDF) project no. RC.2.2.06-0001: “Research Infrastructure for Campus-based Laboratories at the University of Rijeka (RISK)” and partly supported by the University of Rijeka, Croatia, project uniri-tehnic-18-32 „Advanced mechatronics devices for smart technological solutions“. Z. Hadas, P. Tofel and O. Ševecek acknowledge the support provided via the Czech Science Foundation project GA19-17457S „Manufacturing and analysis of flexible piezoelectric layers for smart engineering”. J. Hlinka, F. Ksica and O. Rubes gratefully acknowledge the financial support provided by the ESIF, EU Operational Programme Research, Development and Education within the research project Center of Advanced Aerospace Technology (Reg. No.: CZ.02.1.01/0.0/0.0/16_019/0000826) at the Faculty of Mechanical Engineering, Brno University of Technology. V. Pakrashi would like to acknowledge UCD Energy Institute, Marine and Renewable Energy Ireland (MaREI) centre Ireland, Strengthening Infrastructure Risk Assessment in the Atlantic Area (SIRMA) Grant No. EAPA\826/2018, EU INTERREG Atlantic Area and Aquaculture Operations with Reliable Flexible Shielding Technologies for Prevention of Infestation in Offshore and Coastal Areas (FLEXAQUA), MarTera Era-Net cofund PBA/BIO/18/02 projects. The work of J.P.B. Silva is partially supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/FIS/04650/2020. M. Mrlik gratefully acknowledges the support of the Ministry of Education, Youth and Sports of the Czech Republic-DKRVO (RP/CPS/2020/003

    Hf Incorporation in (Ti,Zr)NiSn Half Heusler Solid Solutions via Mechanical Alloying

    No full text
    Half Heusler materials are promising thermoelectric materials with potential application in generators at medium range temperatures. Solid solutions are typically prepared by arc melting, presenting interesting properties. In this work, the effect of Hf incorporation and the formation of solid solutions is discussed. More specifically, Ti1−xHfxNiSn and (Ti0.4Zr0.6)1−yHfyNiSn half Heusler materials were synthesized via mechanical alloying and consolidated via hot press sintering. Hf incorportation in the lattice strongly affected the lattice thermal conductivity due to the large mass fluctuation. The power factor and thermoelectric figure of merit was optimized via Sb doping the values of 34 μW/cmK2 and 38 μW/cmK2; 0.72 and 0.76 at 762 K for Ti0.4Hf0.6NiSn0.985Sb0.015 and (Ti0.4Zr0.6)0.7Hf0.3NiSn0.98Sb0.02, respectively, were reached

    Hf Incorporation in (Ti,Zr)NiSn Half Heusler Solid Solutions via Mechanical Alloying

    No full text
    Half Heusler materials are promising thermoelectric materials with potential application in generators at medium range temperatures. Solid solutions are typically prepared by arc melting, presenting interesting properties. In this work, the effect of Hf incorporation and the formation of solid solutions is discussed. More specifically, Ti1−xHfxNiSn and (Ti0.4Zr0.6)1−yHfyNiSn half Heusler materials were synthesized via mechanical alloying and consolidated via hot press sintering. Hf incorportation in the lattice strongly affected the lattice thermal conductivity due to the large mass fluctuation. The power factor and thermoelectric figure of merit was optimized via Sb doping the values of 34 μW/cmK2 and 38 μW/cmK2; 0.72 and 0.76 at 762 K for Ti0.4Hf0.6NiSn0.985Sb0.015 and (Ti0.4Zr0.6)0.7Hf0.3NiSn0.98Sb0.02, respectively, were reached
    corecore